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Data analysis in MRI usually entails a series of processing procedures. One of these procedures is noise
assessment, which in the context of this work, includes both the identification of noise-only pixels and
the estimation of noise variance (standard deviation). Although noise assessment is critical to many
MRI processing techniques, the identification of noise-only pixels has received less attention than has
the estimation of noise variance. The main objectives of this paper are, therefore, to demonstrate (a) that
the identification of noise-only pixels has an important role to play in the analysis of MRI data, (b)
that the identification of noise-only pixels and the estimation of noise variance can be combined into
a coherent framework, and (c) that this framework can be made self-consistent. To this end, we propose
a novel iterative approach to simultaneously identify noise-only pixels and estimate the noise standard
deviation from these identified pixels in a commonly used data structure in MRI. Experimental and sim-
ulated data were used to investigate the feasibility, the accuracy and the stability of the proposed
technique.

Published by Elsevier Inc.
1. Introduction

Magnetic resonance imaging (MRI) [1] is a rapidly expanding
field and a widely used medical imaging modality possessing many
noninvasive and quantitative techniques capable of probing func-
tional activity [2] as well as tissue morphology in the brain [3,4].
Data analysis in MRI is sophisticated and can be thought of as a
‘‘pipeline” of closely connected processing and modeling steps.

Because noise in MRI data affects all subsequent steps in this
pipeline, e.g., from noise reduction [5] and image registration [6]
to techniques for breaking the noise floor [7], parametric tensor
estimation [8–11] and error propagation [12–17], accurate noise
assessment has an important role in MRI studies.

Noise assessment in MRI usually means the estimation
of Gaussian noise variance (or standard deviation (SD)) alone
[18–23]. Previously proposed methods for the estimation of Gauss-
ian noise SD can be separated into two groups. In the first group,
the Gaussian noise SD is estimated from a manually selected re-
gion-of-interest (ROI), while in the second group, it is estimated
from an entire image or a volumetric data set automatically with-
out human intervention.

A major problem faced by the first group of manual methods is
lack of reproducibility of the results. The second group of automatic
Inc.

).
methods overcame this problem by bringing objectivity into the
estimation process so that the Gaussian noise SD can be estimated
without human input and that the results obtained can be repro-
duced. However, the most critical problem facing current auto-
matic methods is the separation of pure noise from noisy signals
and other artifacts because the way in which the automatic meth-
ods of Sijbers et al. [22] and of Chang et al. [21] work is by lumping
the values of all the pixels from an entire image or from an entire
volumetric data set into a one-dimensional array and then estimat-
ing the Gaussian noise SD from the histogram of this one-dimen-
sional array. Complicated criteria and techniques have been
developed by Sijbers et al. [22] and Chang et al. [21] to separate
pure noise from noisy signals and other artifacts from the histo-
gram alone. In this work, we introduce a simpler paradigm for per-
forming noise assessment in MRI. The proposed method shows
improved performance compared to previous methods, and may
have application in other scientific and technological areas as well.

One of the major aims of this paradigm is to help us get out of
the ‘‘one-dimensional” predicament faced by the automatic meth-
ods of Sijbers et al. and Chang et al. so that the separation of pure
noise from noisy signals and other artifacts can be done more
cleanly and simply. A moment of reflection will indicate that the
identification of noise-only pixels should be a part of the paradigm
in order to enhance the performance and accuracy of the estima-
tion process, but the identification of noise-only pixels entails
some a priori knowledge of the Gaussian noise SD. Therefore, any
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paradigm that attempts to make the identification of noise-only
pixels a part of the overall noise assessment protocol will necessar-
ily be iterative. Such a paradigm, if feasible, not only can improve
the accuracy of the estimate of the Gaussian noise SD but also
can provide spatial distributions of noise for further analysis or
for quality control and calibration.

In this work, we will present one such paradigm. We will dem-
onstrate that (a) the identification of noise-only pixels, which has
not received much attention in MRI literature, is as important
as—if not more important than—the estimation of Gaussian noise
SD, (b) the identification of noise-only pixels and the estimation
of Gaussian noise SD via the sample median (or the sample mean
or other optimal sample quantiles, see Appendix B) can be com-
bined into a single coherent framework of noise assessment, and
(c) this framework can be made self-consistent, that is, it can be
turned into a fixed-point iterative procedure.

Briefly, we propose a novel approach to simultaneously identify
noise-only pixels and estimate the Gaussian noise SD from a com-
monly used data structure (see Fig. 1) in MRI. The data structure as
shown in Fig. 1 is ubiquitous in functional MRI and diffusion MRI. It
is composed of a series of images acquired at the same physical
(slice) location but not necessarily acquired under the same exper-
imentally controlled conditions. Hereafter, we shall refer to the
proposed technique as PIESNO, which stands for Probabilistic Iden-
tification and Estimation of Noise. PIESNO consists of two distinct
parts that are connected dynamically in an iterative manner. The
first part of PIESNO is the proposed probabilistic technique for
identifying noise-only pixels, which is specifically formulated to
deal with the data structure mentioned above. Here, it is assumed
that the noise variance is uniform both within and across images in
this data structure. The second part of PIESNO is the estimation of
Gaussian noise SD via the sample median (or the sample mean or
other optimal sample quantiles, see Appendix B), which will be
outlined below.

The proposed probabilistic identification of noise-only pixels is
designed to take advantage of this data structure to increase the
discriminative power to identify noise-only pixels. Specifically, it
identifies noise-only pixels through the distribution of the mean
of a collection of measurements, shown as a vertical column of
data along the k axis in Fig. 1. Consequently, the discriminative
power of the identification, which is related to the sharpness of
the distribution of the mean, increases as the number of images
within the proposed data structure increases. For completeness,
we will show that the distribution of the mean used in this work
is a Gamma distribution, which is well-known in MRI, e.g., see [24].

Our technique for estimating Gaussian noise SD is based on the
median method but we also provide other methods of estimation
based on the sample mean and optimal sample quantiles. The
k

Ma
und
con
at t

Fig. 1. The proposed data structure includes volumetric data composed of magnitude
identical experimentally controlled conditions.
median method is a simple formula of the Gaussian noise SD
expressed in terms of the sample median of a collection of noise-
only measurements. We chose the sample median for its ease of
use. The theoretical reason behind our choice of the sample median
over other slightly more optimal methods based on the sample
quantile of a specific order is explicated in Appendix B.

Both the identification of noise-only pixels and the estimation
of noise SD are integral parts of the proposed framework on noise
assessment because they are connected dynamically and itera-
tively to identify noise and estimate noise SD in a self-consistent
manner.

Both experimental and simulated data were used to investigate
the feasibility, accuracy, stability and global property of the pro-
posed framework. Our approach managed to tease apart two noise
distributions through a simple global analysis based on a well-
know graphical technique in nonlinear dynamics known as Cobweb
[25].

A comparison between our technique and Sijbers’ [22] (hereaf-
ter referred to as the Sijbers Method) was performed. Our tech-
nique demonstrated a lower mean squared error in estimating
the Gaussian noise SD and a combined method based on both
our technique and the Sijbers Method was found to be the most
optimal when the number of images within the data structure
was above five.
2. Methods

2.1. Theoretical background

In this section, we will first provide the necessary details about
the distribution of the arithmetic mean of K independent Gamma
random variables, which is also a Gamma distribution, and then
establish the connection between the proposed data structure
and this well-known distribution by a few simple changes of vari-
ables. Throughout this section, we will use the similar notation as
employed in [26].

It is known that magnitude MR signals, m (or mi; j; k in Fig. 1),
reconstructed from the sum-of-squares algorithm through an N-
receiver-coil MRI system [27] follow a nonCentral Chi, ~v � m=rg ,
distribution of 2N degrees of freedom with the non-centrality
parameter given by g2=r2

g . The probability density function (PDF)
of ~v is given by [23,26]:

p~vðmjg;rg ;NÞ¼
mN

r2
ggN�1 exp

�
�m2þg2

2r2
g

�
IN�1

�
mg
r2

g

�
; mP0 ð1Þ

where the PDF is zero for m < 0, g is the underlying (combined) sig-
nal intensity, rg is the Gaussian noise SD, and Ik is the kth-order
i

j
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Fig. 2. (A) PDF’s and (B) CDF’s of the mean of Gamma random variables with respect
to different values of K and N.
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modified Bessel function of the first kind. We should note that mag-
nitude MR signals reconstructed from other parallel image recon-
struction techniques may not follow nonCentral Chi distribution,
see, for example, the work of Dietrich et al. [28]. Note that when
N ¼ 1, Eq. (1) reduces to the Rician PDF [29]. In the context of
MRI, the Rician PDF was first used by Henkelman [19] and Bernstein
et al. [20]. Later, it was popularized by Gudbjartsson and Patz [30].
In what follows and for lack of a better name, we shall use the PDF
of magnitude noise to refer to the PDF of magnitude MR signals in
the absence of the underlying signal, i.e., g ¼ 0.

In this work, the PDF of magnitude noise (i.e., g ¼ 0) is more rel-
evant than the PDF of magnitude signal (i.e., g – 0). Therefore, we
will derive the PDF of magnitude noise from Eq. (1) by setting the
underlying signal to zero, i.e., g ¼ 0. It can be shown that the PDF of
magnitude noise is given by:

p~vðmj0;rg ;NÞ ¼
m2N�1

2N�1r2N
g ðN � 1Þ!

exp
�
� m2

2r2
g

�
; ð2Þ

after IN�1 in Eq. (1) is replaced by its first term Taylor expansion
about g ¼ 0, which is

IN�1ðmg=r2
gÞ �

1

2N�1ðN � 1Þ!
ðmg=r2

gÞ
N�1

:

Note that when N ¼ 1, Eq. (2) reduces to the Rayleigh PDF.
By a change of variables from m to t ¼ m2=ð2r2

gÞ (or ti; j; k ¼
m2

i; j; k=ð2r2
gÞ), it can be shown that t follows a particular form of

the Gamma PDF:

pcðtjNÞ ¼
1

ðN � 1Þ! tN�1 expð�tÞ � fcðtjN;1Þ; ð3Þ

where the Gamma PDF, fc, is defined as [31]:

fcðxjn;bÞ ¼
1

CðnÞ bn xn�1 expð�x=bÞ; ð4Þ

and C is the Gamma function.

2.2. Sampling distribution of the mean of several observed m-values

The measurements mi; j; k’s are drawn from the distribution de-
fined in Eq. (2) and any statistic computed from a set of mi; j; k’s will
have to be drawn from a sampling distribution for that statistic. For
simplicity, we have chosen the arithmetic mean as our statistic for
the identification of noise-only pixels. Therefore, if one knows the
distribution for the mean, which necessarily depends on rg , one
can decide for any observed mean if that particular sample came
from the noise-only distribution. In what follows we will provide
the expression for the arithmetic of mean of the squares of
mi; j; k’s through the method of Characteristic function. The com-
plete derivation is shown in Appendix A.

In short, the new random variable si; j representing the arithme-
tic mean of K independent Gamma random variables, fti; j; 1;

ti; j; 2; � � � ; ti; j; Kg, is given by

fcðsjNK;1=KÞ ¼ KNK

ðNK � 1Þ! sNK�1 expð�KsÞ: ð5Þ

Further, the new random variable si; j related to K independent
magnitude MR measurements, fmi; j; 1;mi; j; 2; � � � ; mi; j;Kg; drawn
from the distribution of magnitude noise is given by:

si; j ¼
1
K

XK

k¼1

ti; j; k ¼
1

2r2
g K

XK

k¼1

m2
i; j; k: ð6Þ

The derivation in Appendix A uses only a few simple substitu-
tions of variables, which takes advantage of the reproductive prop-
erty of the Gamma distribution [32]. Interested readers may find it
interesting to compare the derivation presented in [24].
2.3. Probabilistic identification of noise-only pixels

In order to probabilistically identify the noise-only pixels we
need to define an upper and a lower threshold on s so that a given
percentage of all noise-only voxels fall between these values. In or-
der to do so we will need to derive the cumulative distribution
function (CDF), and its inverse, of the distribution of s.

We will first define the CDF of s and its inverse to specify the
lower and upper threshold values of s. A few CDF’s of s are shown
in Fig. 2. We also assume that N and K are known. Additionally, the
initial estimate of rg is required, which can be obtained automat-
ically by the simple search method outlined below.

Let the CDF of s with probability a be denoted by PsðkjN;KÞ �R k
0 fcðsjNK;1=KÞds ¼ a and its inverse, the inverse CDF of s, be de-

noted symbolically by k � P�1
s ðajN;KÞ. Note that the CDF of s and

its inverse are related to each other by k ¼ P�1
s ðPsðkjN; KÞjN;KÞ and

a ¼ PsðP�1
s ðajN;KÞjN;KÞ. Note also that P�1

s ðajN;KÞ is given by
InverseGammaRegularized [NK,1-a]/K in Mathematica [33].

The lower and upper threshold values of s, k� and kþ, with prob-
abilities, respectively, a=2 and 1� ða=2Þ, can be expressed in terms
of the inverse CDF of s. Symbolically, they are given by
k� ¼ P�1

s ða=2jN;KÞ and kþ ¼ P�1
s ð1� a=2jN;KÞ.

Thus, a collection of K independent magnitude MR signals
fmi; j; 1;mi;j;2; � � � ; mi; j;Kg is judged to contain only noise if
si; j ¼ 1

2r2
g K

PK
k¼1m2

i; j; k satisfies the inequalities, k� 6 si; j 6 kþ .
The test proposed here is a two-sided test. We should also men-

tion that a one-sided test may be used instead of the two-sided test.
But, the estimation step via the median or the quantile methods will
no longer be as simple as the one presented below. In short, the med-
ian and the quantile methods will have be corrected for bias if these
methods are to be used with a one-sided test.

2.4. Estimation of noise via the sample median, the sample mean or
optimal quantiles

It is well known that the estimation of Gaussian noise SD can be
obtained from the method of moments. For convenience, we pro-
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Fig. 3. A step-by-step procedure of PIESNO.

Communication / Journal of Magnetic Resonance 199 (2009) 94–103 97
vide here the method for estimating the Gaussian noise SD from
the sample mean, denoted by < m >, of a collection of measure-
ments m’s (18,23,26):

rg ¼< m > =bN ; ð7Þ

where bN ¼
ffiffiffip
2

p ð2N�1Þ!!
2N�1ðN�1Þ! ¼

ffiffiffip
2

p QN
k¼2

k�1=2
k�1 and the double factorial

function is defined as n !! ¼ n� ðn� 2Þ � :::.
We should point out that the Gaussian noise SD, rg , can also be

estimated from the sample quantile of a unique optimal order a�

(Appendix B):

rg ¼ qa�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2P�1

s ða�jN;1Þ
q�

; ð8Þ

where qa� is the quantile of optimal order a�, see Table 1. Interest-
ingly, these optimal quantiles approach the sample median as N in-
creases, in the sense as described in Appendix B. A well known but
slightly less optimal sample quantile is of course the sample median
(i.e., a ¼ 1=2), denoted by l � q1=2. Specifically, rg can be expressed
as a function of both l and N as follows:

rg ¼ l
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2P�1
s ð1=2jN;1Þ

q
: ð9Þ

Note that both the sample median and the median of the continu-
ous PDF, Eq. (2), are denoted by the same symbol. Note also that
the denominator of Eq. (9) can be computed in advance, see Table
2. For example, when N ¼ 1, Eq. (9) can be expressed analytically
as rg ¼ l=

ffiffiffiffiffiffiffiffiffiffiffiffi
2 ln 2
p

.

2.5. The proposed framework of noise assessment (PIESNO)

PIESNO is best described through a step-by-step procedure as
shown in Fig. 3.

Step 1 is on the identification of noise-only pixels. In practice,
this step should be carried out on each of the pixels before moving
on to Step 2 because dynamically adding new elements into the
one-dimensional array, X, of Step 2 is inefficient. Note also that
the summation in Step 1 should be computed in advance.

In Step 2, the link between the identification of noise-only pix-
els and the estimation of Gaussian noise SD is established. Here, a
one-dimensional array, X, is created. It is the union (in set-theo-
retic language) of all the arrays of K measurements that have been
Table 1
The value of the optimal quantile order for different N and the value of the
denominator of Eq. (8) for different N but at the optimal quantile order.

N Optimal quantile order a ð2P�1
s ða�jN;1ÞÞ

1=2

1 0.7968 1.7853
2 0.7306 2.2759
4 0.6722 3.0289
8 0.6254 4.1438

16 0.5900 5.7593
32 0.5642 8.0727
64 0.5456 11.3652

128 0.5323 16.0365

Table 2
The value of the denominator of Eq. (9) for various N.

N ð2P�1
s ð1=2jN;1ÞÞ1=2

1 1.17741
2 1.832128
4 2.710003
8 3.916439

16 5.597844
32 7.958302
64 11.28423
identified positively in Step 1. Note that the number of positive
identifications is defined to be the number of the positively identi-
fied arrays. Finally, the sample median of X, l, is selected. Note
again that the sample mean of X or the sample quantile of X of
a specific order may be used here.

Step 3 is the estimation of noise SD. The sample median, l, of X
computed in Step 2 is used to estimate rg via Eq. (9). Note again
that the sample mean and other optimal quantiles as defined in,
respectively, Eq. (7) and Eq. (8) may be used instead of Eq. (9).

In Step 4, the iteration stops if X is empty, otherwise it will
move through Steps 1 to 4 sequentially until convergence or the
maximum number of iterations is reached. Here, a sequence of
estimates of rg produced by the iterative procedure is considered
convergent if the absolute difference between any successive esti-
mates is less than some small number, say 10�10.

Note that the accuracy of the estimation of noise is dependent
upon how the elements of X are distributed, which, in turn, is
determined by the lower and upper threshold values of how
the identification of noise is performed. In short, the two areas
excluded by the threshold values in the PDF of s should be equal
in order to ensure accurate estimate of the Gaussian noise SD.

2.6. An automatic method for determining a good initial estimate

PIESNO can be made automatic by a systematic search for a
good initial estimate of rg . This systematic search begins by finding
an upper bound, M, of rg . Here, M is estimated from the whole vol-
umetric data through Eq. (9) (or Eq. (7) or Eq. (8)) where l is taken
to be the sample median (or the sample mean or the sample quan-
title of a specific order) of the whole volumetric data.

Next, the interval from 0 to M is subdivided to generate a set of
points, U ¼ fM=l; 2M=l; � � � ; ðl� 1ÞM=l; Mg where l is some posi-
tive integer, say 100. Each point in U then serves as an initial solu-
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tion. The best initial solution is the one that produces the highest
number of positive identifications.

2.7. Graphical analysis of global behavior of the iterative procedure

In the previous section, we adopted the strategy of using the to-
tal number of positive identifications as a means to find a good ini-
tial estimate. This strategy is not foolproof but it works in many
MR applications because it is generally true that there is only
one distribution of magnitude noise. In this section, we will pres-
ent a general strategy based on a well-known graphical technique
in nonlinear dynamics known as Cobweb for analyzing the global
behavior of the proposed iterative procedure [25]. This general
strategy is able to detect multiple distributions of magnitude noise
based on the number of attracting fixed points or the number of lo-
cal maxima of the function that computes the number of positive
identifications.

First, let us define a function, P, based on the first three steps of
PIESNO:

rnþ1 ¼ PðrnÞ: ð10Þ

In essence, P takes in some value of the Gaussian noise SD, rn,
and returns the next value of the Gaussian noise SD, rnþ1, without
going through the iterative process. Similarly, we can define T as a
function of rn to tally the positive identifications at rn. It is impor-
tant to note that PðrnÞ is defined to be zero if TðrnÞ is zero. It
should be clear that we can also generate the binary mask for a gi-
ven rn. A plot of these two functions, and of a unit slope curve can
provide an intuitive and informative snapshot of the global behav-
ior of PIESNO for a given data set, see Section 3.4 for the results.
Fig. 4. (A) A T2-weighted image. (B) A diffusion-weighted image. (C) A quaternary
image on the identification of noise. Positively identified pixels are white. In this
case, the proposed method was applied to all 14 images (2 non diffusion-weighted +
12 diffusion-weighted images). Pixels in which the sij ’s are greater than the upper
threshold are colored light gray. Pixels in which the sij ’s are nonzero but less than
the lower threshold are colored dark gray. The black pixels belong to those sij ’s that
are zero. (D) Another quaternary image on the identification of noise where the
proposed method was applied to only the diffusion-weighted images. (E) The
histogram of the noise array associated with (D) and the probability density
function with N = 8 and the Gaussian noise SD estimated from PIESNO.
3. Results

3.1. Experimental data

PIESNO was tested with a set of human brain data acquired on a
1.5 Tesla scanner (GE Medical Systems, Milwaukee, WI) based on
the sum-of-squares reconstruction [27] with an 8-channel phased
array coil, i.e., N ¼ 8, using a single-shot spin-echo EPI sequence.
Below are the specific experimental parameters: Field-Of-View
(FOV) of 24 cm � 24 cm, 60 slices without gaps and with a slice
thickness of 2.5 mm, an image matrix of 96 � 96. Each diffusion
weighted image (DWI) dataset consisted of 2 images without diffu-
sion weighting (b = 0 s/mm2) and 12 images with different gradient
directions but with the same diffusion weighting of 1100 s/mm2,
i.e., K ¼ 14 at each slice location, see Fig. 4A and B. If we set a to
be 0:10, we have k� ¼ 6:798 and kþ ¼ 9:282 for the case when
K ¼ 14. For this particular slice location, the initial estimate of rg

was found to be 0.0106 through our automatic search method with
l ¼ 50. The final estimate of 0.0104 was obtained in 13 iterations in
less than a second. Those regions that are classified as containing
noise-only measurements are shown in white in Fig. 4C.

Note that Fig. 4C and D are quaternary images. Pixels that are
classified as containing noise-only measurements are shown in
white. Pixels whose sij’s are greater than the upper threshold are
shown in light gray. Pixels whose sij’s are nonzero but less than
the lower threshold are shown in dark gray, and finally, pixels
whose sij’s are zero are shown in black. The results of another sim-
ulation test where only the diffusion weighted images were ana-
lyzed are shown in Fig. 4D and the histogram of the
corresponding array of noise, X, is shown in Fig. 4E. The probability
density function of noise based the final estimate of the Gaussian
noise SD produced by PIESNO is shown in Fig. 4E. Further investi-
gation shows that some regions excluded by PIESNO in the top of
the field of view in both Fig. 4C and D are due to low-level artifacts.
3.2. Numerical test using simulated data

Simulated data were also used to gain qualitative insight into the
numerical behavior of PIESNO. The automatic search method was
not used in this test because the stability of PIESNO with respect
to different initial estimates of rg was under investigation. Here,
the same set of parameters was used, i.e., N ¼ 8, K ¼ 14, a ¼ 0:10,
k� ¼ 6:798 and kþ ¼ 9:282, but the ground truth of rg , for simplic-
ity, was set to 10 arbitrary units. We generated 5000 arrays of ran-
dom samples with each array containing K ¼ 14 random samples.
Each random sample was generated according to the following
expression,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1ðe2

i þ d2
i Þ

q
, where ei’s and di’s are Gaussian distrib-

uted with mean zero and standard deviation of 10 arbitrary units.
The results of this study are shown in Fig. 5. Note that the number
of positively identified regions was one out of 5000, when 7.805
and 12.75 were used as the initial estimates of rg . It is interesting
to note that the proposed procedure converged to the result, which
was close to the ground truth, even when it began with these esti-
mates. Additionally, the final percent of positively identified sam-
ples was about 90.56% and the final estimate of rg was about
10.015. These results were independent of the initial solutions used.
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3.3. A comparison with Sijbers’ recently proposed technique using
simulated data

A synthetic image matrix of 64 � 64 was constructed (Fig. 6A)
and used to compare the performance of three different methods,
(I) PIESNO, (II) Sijbers’ recently proposed method [22] and (III) a
method that combines both (I) and (II) by using one of the outputs
of PIESNO, i.e., X, as an input to (II). The performance measure used
was the mean squared error in estimating the Gaussian noise SD.
Further, the performance of these methods in terms of average
time needed to carry out a single estimation of noise variance
was also evaluated.

Note that the following data structure, {{0, 2160}, {2, 176}, {4,
176}, {6, 176}, {8, 176}, {10, 176}, {12, 176}, {14, 176}, {28, 176},
{48, 176}, {96, 176}, {192, 88}, {260, 88}}, shows all distinct ele-
ments of our synthetic image together with their multiplicities,
e.g., there are 2160 elements with null signal intensity, 176 ele-
ments with signal intensity of 2 (arbitrary unit), and so on.

For convenience, the same set of parameters was used, i.e.,
K ¼ 14, a ¼ 0:10, except for N, which in this case was 1 because
the Sijbers method was specifically designed for dealing with the
Rician/Rayleigh data. Therefore, we had k� ¼ 0:604 and kþ ¼
1:476. For simplicity, the 14 images (K ¼ 14) were drawn from re-
peated measurements.
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Fig. 6. (A) The ground truth image, a synthetic image with different signal intensities ran
Gaussian noise SD) as a function of the Gaussian noise SD. Note that the mean squared er
measurements (images) for each Gaussian noise SD on the horizontal axis.
In this comparison, 5000 volumetric data sets each of which
contains 64 � 64 � 14 random samples were generated for each
value of rg based on the sum-of-squares algorithm. The values of
rg range from 1 to 20 in a uniform step of 1. Each volumetric data
set served as an input to both PIESNO and the Sijbers method. The
initial number of bins for the Sijbers method was 1200 but it is well
known that one of the advantages of the Sijbers method is the abil-
ity to find an optimal number of bins. The results are shown in
Fig. 6B. PIESNO achieved lower mean squared error in estimating
the Gaussian noise SD than did the Sijbers method. In addition, it
is clear that PIESNO can improve the performance of the Sijbers
method (or other methods of noise variance estimation) when
the noise ensemble, X, is used as an input to the Sijbers method.

3.4. Graphical analysis of global behavior of PIESNO using a simulated
data set

A synthetic volumetric data of 64 � 64 � 16 was constructed.
Each of the 16 images was created with random numbers drawn
from two Rayleigh distributions, rg ¼ 10 and rg ¼ 20, based on
the following rule. If both indices of a pixel location, (i, j), are even
number, then a random number drawn from Rayleigh distribution
of rg ¼ 10 will be placed on this pixel location; otherwise, a ran-
dom number drawn from the other Rayleigh distribution will be
5 10 15 20

Gaussian noise SD  (σ )g

(II) Sijbers Method

(I) PIESNO

(III) A combined method of (I) and (II)

ging from 0 to 260 (arbitrary units). (B) The mean squared error (in estimating the
ror in estimating the Gaussian noise SD is computed from K = 14 and 5000 repeated



100 Communication / Journal of Magnetic Resonance 199 (2009) 94–103
placed on this pixel location. Figs. 7A and B are representative of
the noisy images constructed using the rule mentioned above.
Fig. 7C is a histogram of the whole volumetric data. Note that it
is impossible to infer from this histogram that there are two (Ray-
leigh) distributions.

Based on the technique outlined in Section 2.7, it is possible to
detect multiple Rayleigh distributions through PIESNO. Fig. 7D and
E are binary masks computed at two different attracting fixed
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Fig. 7. (A and B) Two representative noisy images. (C) Histogram of the noisy
volumetric data. (D and E) Binary masks indicating two spatial distributions of noise
drawn from two different Rayleigh distribution. (F) Graphical analysis of PIESNO.
points shown in Fig. 7F. In Fig. 7F, it is clear that the function, T,
which is the total number of positive identifications, peaks at or
around the attracting fixed points. The nonzero trough of the func-
tion, T, seems to coincide with the repelling fixed points. The re-
sults showed that the number of attracting fixed points or the
number of local maxima of the function T coincides with the num-
ber of clusters of noise having different probability distributions.

4. Discussion

Earlier approaches such as those of Sijbers et al. [22] and Chang
et al. [21] are general and can be applied to any 3D volumetric data
set. These approaches can also be applied to the particular 3D vol-
umetric data considered in this paper.

In a typical functional or diffusion MRI data set, one usually has
many images for a particular slice location and these images are
usually acquired under slightly different experimentally-con-
trolled conditions. The data structure considered in this work re-
quires nothing more than a simple rearrangement of data and so
is the data structure considered by Sijbers et al. and Chang et al.
The data structure considered by them is a 3D volumetric data
set consisted of distinct images across multiple slice locations.
There is nothing special about the latter data structure or the data
structure used in this paper because the basic assumption about
the property of the Gaussian noise SD is the same. Namely, the
Gaussian noise SD is assumed to be uniform either across multiple
slice locations or across multiple images of the same location, e.g.,
if the readout bandwidth is maintained at the same level for all the
images. Consequently, it is superfluous to regard the data structure
used by Sijbers et al. and Chang et al. to be better or more appro-
priate than the data structure used in this work for estimating the
Gaussian noise SD.

Our approach is designed for the particular 3D volumetric data
mentioned above (multiple images acquired with different exper-
imental conditions but at the same slice location) and cannot be
applied to any 3D volumetric data. Our method takes advantage
of this particular 3D volumetric data structure to increase the dis-
criminative power of the identification of noise-only pixel. We
should point out that our approach may not be optimal when K
is small (less than 5). But, in high angular resolution diffusion
MRI or functional MRI, K is usually greater than 5.

The initial motivation behind this work was simply to take
advantage of the multiplicity of the images within the proposed
data structure to increase the discriminative power of the identifi-
cation of noise-only pixels, and to develop a simple and self-consis-
tent framework of noise assessment that incorporates both the
identification of noise-only pixels and the estimation of Gaussian
noise SD.

This paper can be thought of as a sequel to but independent of
our recent paper on a signal-transformational framework for
breaking the noise floor in MRI and other imaging sciences [7].
The present method for estimating the Gaussian noise SD and
the technique proposed in [7] represent our major attempt to
decouple the fixed point formula of SNR [26] into two self-consis-
tent approaches for estimating the underlying signal and the
Gaussian noise SD, respectively. The advantage of this decoupling
is substantial because the estimation of the Gaussian noise SD
can be obtained from a much larger collection of samples. As a con-
sequence, the precision of the Gaussian noise SD estimate will be
significantly increased, and in turn, the precision of the underlying
signal intensity estimate will also be increased [7].

The proposed identification of noise-only pixels is a simple and
highly discriminative method for identifying noise because its
identification criterion entails a few simple arithmetic operations
and its discriminative power is proportional to the number of
images (i.e., K) within the proposed data structure. PIESNO can
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be viewed as a clustering algorithm for finding different noise-only
regions. Note that the input parameters of PIESNO can be obtained
readily, e.g., see [34] for a routine on the CDF of the Gamma distri-
bution. Note also that its discriminative power decreases as the
number of combined channels (i.e., N) increases, see Fig. 2.

In this work, we use a quaternary image rather than a binary im-
age to distinguish different types of pixel. In essence, a quaternary
image can provide useful visual information about the four distinct
decision-making regions (from the PDF) to which a particular sij be-
longs. For example, PIESNO seems to be able to exclude low-level
artifacts in the top of the field of view in both Fig. 4C and D. Interest-
ingly, the values of these low-level artifacts are still higher than the
upper threshold. Note that some pixels in dark gray are persistently
distributed at the interface between the brain and the skull. The val-
ues of these pixels are nonzero but less than the lower threshold. The
source of this peculiar phenomenon may be due to the use of the Fer-
mi filter in the image reconstruction. Finally, regions excluded by
PIESNO that are outside of the tissue region may provide useful
information about spatial distribution of low-level artifacts.

The proposed estimation of Gaussian noise SD via the median
method is an efficient and robust method for estimating the Gauss-
ian noise SD because sample median can be found very efficiently,
e.g., see [35]; the sample median is a statistically robust measure,
that is, robust against outliers. Furthermore, the sample mean or
the other slightly more optimal quantiles developed in Appendix
B may be used instead of the sample median.

The proposed framework of noise assessment, PIESNO, shows
how both the identification of noise-only pixels and the estimation
of Gaussian noise SD can be connected in a dynamic and iterative
manner. PIESNO was shown to be beneficial to methods of estima-
tion such as that of Sijbers and coworkers. That is, we showed that
PIESNO can be combined with other noise variance estimation
methods, e.g., [21,22,36], to achieve better performance in terms
of the mean squared error in estimating the Gaussian noise SD.
We remark that the proposed method is slightly more general than
the maximum likelihood based approach proposed by Sijbers and
coworkers [22] because our method is applicable to larger class
of magnitude data than just Rayleigh-distributed data (i.e., N ¼ 1).

PIESNO is general and can be adapted to other imaging sciences
by using a different PDF and CDF of interest. An important applica-
tion of PIESNO is the assessment of noise in the brain region. Spe-
cifically, PIESNO can be used to evaluate the quality of images
acquired at high diffusion weighting through one of the high angu-
lar resolution diffusion imaging (HARDI) techniques [37–42].
HARDI images (acquired at the same slice location and the same
diffusion weighting, but with either different or the same gradient
directions) can be arranged into the proposed data structure. These
HARDI images can then be analyzed via PIESNO to determine
whether a region of interest (ROI) has any pixels that contain only
noise. It should be clear that this type of noise assessment is also
applicable to fMRI images.

Here, we discuss some limitations of our approach. PIESNO can-
not be expected to perform well for very small K because the iden-
tification of noise may be less stable and may not produce sufficient
number of elements in X for the estimation of noise via the median
method to be useful as an estimator. Nevertheless, one can still esti-
mate the Gaussian noise SD from a region-of-interest (ROI) in the
image background via the median method alone or the optimal
quantile method developed in Appendix B or other classical formu-
lae based on the mean or the standard deviation of the measure-
ments in that ROI [19]. Based on our experience with numerous
simulation tests on the same simulated data used in Fig. 6, PIESNO
was found to perform well when K was greater than 5. At K = 5, the
mean squared error of PIESNO in estimating the Gaussian noise SD
is slightly higher than the Sijbers method but the combined method
remains the best method in terms of mean squared error in estimat-
ing the Gaussian noise SD. At present, we do not have a rigorous
statement about the convergence of PIESNO but it has never failed
to converge in all cases we tested. For some qualitative features the
convergence of PIESNO, see Appendix C. Finally, it is recommended
that interested users should first carry out the graphical analysis of
Section K before moving on to the iterative scheme so that the re-
sult produced by the iterative scheme may be checked against that
of the graphical analysis.

In conclusion, we have demonstrated that it is useful and logical
to combine both the identification of noise-only pixels and the esti-
mation of noise variance into a single coherent framework of noise
assessment. This is an important paradigm for noise assessment in
MRI and in other fields. We have also demonstrated the convergence
of the proposed method and presented a simple graphical analysis
for understanding the global behavior of our iterative schemes.
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Appendix A

In a few steps, we will use the Characteristic functions [43] of fc
and pc to derive the PDF of the arithmetic mean of K independent
Gamma random variables with PDF fcðtjN;1Þ, Eq. (4). First, the
Characteristic function of fc can be shown to be:

ucðxjn;bÞ �
Z 1

0
fcðtjn;bÞ expðixtÞdt ¼ ð1� i bxÞ�n

; ðA1Þ

where i �
ffiffiffiffiffiffiffi
�1
p

. Therefore, the Characteristic function of pc � fcðtj
N;1Þ is given by:

ucðxjN;1Þ ¼ ð1� ixÞ�N
; ðA2Þ

Second, the Characteristic function of the PDF of the arithmetic
mean of K independent Gamma random variables can be expressed
as:

½ucðx=KjN;1Þ�K ¼ ð1� ix=KÞ�NK

¼ ucðxjNK;1=KÞ;u cðxjNK;1=KÞ

¼
Z 1

0

KNK

ðNK � 1Þ! sNK�1 expð�KsÞ expðixsÞds: ðA3Þ

Thus, the PDF of the arithmetic mean of K independent Gamma
random variables is a Gamma distribution given by:

fcðsjNK;1=KÞ ¼ KNK

ðNK � 1Þ! sNK�1 expð�KsÞ; ðA4Þ

where s (or si;j ¼ 1
K

PK
k¼1ti;j;k) is a new random variable denoting the

arithmetic mean of K independent Gamma random variables,

http://sites.google.com/site/piesnoformri/
http://sites.google.com/site/piesnoformri/
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t ¼ m2=ð2r2
gÞ (or ti;j;k ¼ m2

i;j;k=ð2r2
gÞ), with PDF fcðtjN;K ¼ 1Þ. A few

PDF’s of s are shown in Fig. 2.

Appendix B

The connection between the quantile of order a, denoted by qa,
and rg of Eq. (2) is given by the definition of the quantile in a con-
tinuous PDF:Z qa

0
p~vðmj0;rg ;NÞdm ¼ a: ðB1Þ

Eq. (B1) can also be expressed in terms of the CDF of s,
PsðkjN;KÞ ¼ a, by making these substitutions, K ¼ 1, and
k ¼ q2

a=ð2r2
gÞ:

Psðq2
a=ð2r2

gÞjN;1Þ ¼ a: ðB2Þ

Equivalently, Eq. (B2) can be expressed in terms of the inverse
CDF of s:

q2
a=ð2r2

gÞ ¼ P�1
s ðajN;1Þ: ðB3Þ

Hence,

rg ¼ qa=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2P�1

s ðajN;1Þ
q

: ðB4Þ

Although a self-contained discussion on the theoretical justifi-
cations for using the sample median as an estimator of the Gauss-
ian noise SD is beyond the scope of the paper, it is still useful to
point out that the sample quantile of any order a (0 < a < 1) is a
consistent asymptotically normal estimator with several desirable
properties, e.g., page 215 of Dudewicz [44]. Further, the Gaussian
noise SD can be estimated from quantiles of different orders as gi-
ven in Eq. (A3). It can be shown that the sample median, which is
the sample quantile of order 0.5, has higher relative efficiency than
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figure legend, the reader is referred to the web version of this article.)
most quantiles of other orders as N increases. We note that the
expression for the expected variance of the quantile of order a is
given by [44]:

að1� aÞ
p~vðqaj0;rg ;NÞ2

: ðB5Þ

Based on Eqs. (B4,B5), it can be shown that the expected SD for
estimating the Gaussian noise SD through the quantile of order a
can be expressed as:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

að1� aÞ
p

p~vð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r2

g P�1
s ðajN;1Þ

q
j0;rg ;NÞ

: ðB6Þ

Fig. 8A–D show the expected SD for estimating the Gaussian
noise SD through the quantile of order a with N equal to 1, 8, 64
and 128, respectively, and with different Gaussian noise SDs,
rg ¼ 1, 2, 3, 4 and 5, coded in different hues ranging, respectively,
from red to blue.

The optimal quantile order, a�, can be found by finding the min-
imum point of Eq. (B6). It can be shown that the optimal quantile
order is independent of rg . The numerical values of the optimal
quantile order for different N are listed in Table 1. For complete-
ness, the values of the denominator of Eq. (B4) evaluated at the
optimal quantile order are also listed in Table 1. It is clear that
the use of sample median is expedient and reasonable because
we expect the optimal quantile order to approach ½ as N increases.
It is also clear that the sample median used in estimating the
Gaussian noise SD may be replaced by the sample mean.

Appendix C

Although we do not have a rigorous and general statement
about the convergence of the proposed framework, the proposed
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framework has never failed to converge in all the cases we tested.
In this appendix, we discuss some qualitative features of the con-
vergence of PIESNO.

Let us assume that there is only one attracting fixed point, de-
noted by rFP , which is unbeknown to us. In what follows, we will
show that if rn is some estimate, which results in nonempty noise
array X, then we have the following conditions for the next esti-
mate, rnþ1: (A) if rn > rFP then rn > rnþ1 > rFP , and (B) if
rn < rFP then rn < rnþ1 < rFP . Based on these two cases we can
conclude that rn converges to rFP as n increases.

Let us assume that rn > rFP , then we can write rn ¼ brFP with
b > 1. In many simulations we carried out with K > 5, we found
that rnþ1 seems to be close the value

ffiffiffi
b
p

rFP . The same is true when
rn < rFP and rn ¼ brFP with b < 1. Note that the data structure
used in these tests was 128� 128� K with a ¼ 0:1 and N ¼ 1 to
N ¼ 64. For cases with K < 5, (A) and (B) remain true but we did
not find rnþ1 ¼

ffiffiffi
b
p

rFP to be true.
For example, let the dimensions of the volumetric data be

128� 128� K with K ¼ 8, 12, 16 and 20. Let us take rFP ¼ 50 as
the ground truth, a ¼ 0:1, N ¼ 1 and rn ¼ brFP with b ¼ 1:3. Then,
we have rnþ1 ¼

ffiffiffi
b
p

rFP ¼ 57:01 and the following results for K ¼ 8,
12, 16 and 20, respectively: r̂nþ1 ¼ 56:05, 56:55, 56:95, and 57:16.
As K increases, the estimate r̂nþ1 will be more and more variable
because fewer and fewer of the si;j are within the acceptance inter-
val, ½k�; kþ�. Finally, the results for K ¼ 8, 12, 16 and 20, with N ¼ 8
and b ¼ 1:10 (rnþ1 ¼

ffiffiffi
b
p

rFP ¼ 52:44) are, respectively, as follows:
r̂nþ1 ¼ 52:25, 52:31, 52:54, and 52:66
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